Memcached源码阅读五 资源初始化

  • 2021-01-11
  • 浏览 (24)

Memcached源码阅读五 资源初始化

Memcached内部有hash表,各种统计信息,工作线程,网络,连接,内存结构等,在memcached启动时(执行main函数),会对这些资源进行初始化的,网络和内存的初始化操作放到后续分析,这次分析hash表,统计信息,工作线程,网络连接的初始化过程。

1 hash表的初始化

//hash表的初始化,传入的参数是启动时传入的
assoc_init(settings.hashpower_init);
//hashsize的实现
#define hashsize(n) ((ub4)1<<(n))
//主hash表结构定义,在hash表扩容时,会有次hash表,所以有主次hash表区分,该结构是指针的指针,也即相当于数组指针
static item** primary_hashtable = 0;

void assoc_init(const int hashtable_init) {
    if (hashtable_init) {
        //如果设置了初始化参数,则按设置的参数进行初始化
        hashpower = hashtable_init;
    }

    //hashpower的默认值为16,如果未设置新值,则按默认值进行初始化
    primary_hashtable = calloc(hashsize(hashpower), sizeof(void *));
    if (! primary_hashtable) {
        fprintf(stderr, "Failed to init hashtable.\n");
        exit(EXIT_FAILURE);
    }

    STATS_LOCK();//全局统计信息加锁,保证数据同步
    stats.hash_power_level = hashpower;
    stats.hash_bytes = hashsize(hashpower) * sizeof(void *);
    STATS_UNLOCK();
}

2 统计信息的初始化

Memcached内部有很多全局的统计信息,用于实时获取各个资源的使用情况,后面将会看到,所有对统计信息的更新都需要加锁,而这些信息的更新是和Memcached的操作次数同数量级的,所以,在一定程度来说,这些统计信息对性能有影响。

stats结构是对统计信息的一个抽象,各个字段都比较好理解,不做解释。

struct stats {
    pthread_mutex_t mutex;
    unsigned int    curr_items;
    unsigned int    total_items;
    uint64_t        curr_bytes;
    unsigned int    curr_conns;
    unsigned int    total_conns;
    uint64_t        rejected_conns;
    unsigned int    reserved_fds;
    unsigned int    conn_structs;
    uint64_t        get_cmds;
    uint64_t        set_cmds;
    uint64_t        touch_cmds;
    uint64_t        get_hits;
    uint64_t        get_misses;
    uint64_t        touch_hits;
    uint64_t        touch_misses;
    uint64_t        evictions;
    uint64_t        reclaimed;
    time_t          started;          /* when the process was started */
    bool            accepting_conns;  /* whether we are currently accepting */
    uint64_t        listen_disabled_num;
    unsigned int    hash_power_level; /* Better hope it's not over 9000 */
    uint64_t        hash_bytes;       /* size used for hash tables */
    bool            hash_is_expanding; /* If the hash table is being expanded */
    uint64_t        expired_unfetched; /* items reclaimed but never touched */
    uint64_t        evicted_unfetched; /* items evicted but never touched */
    bool            slab_reassign_running; /* slab reassign in progress */
    uint64_t        slabs_moved;       /* times slabs were moved around */
};

统计信息的初始化也就是对stats变量的一个初始化。

//全局对象的定义
struct stats stats;
//全局变量的初始化,该全局变量在memcached启动之后,一直使用
static void stats_init(void)
{
    stats.curr_items = stats.total_items = stats.curr_conns =
                       stats.total_conns = stats.conn_structs = 0;
    stats.get_cmds = stats.set_cmds = stats.get_hits = stats.get_misses =
                     stats.evictions = stats.reclaimed = 0;
    stats.touch_cmds = stats.touch_misses = stats.touch_hits =
                       stats.rejected_conns = 0;
    stats.curr_bytes = stats.listen_disabled_num = 0;
    stats.hash_power_level = stats.hash_bytes = stats.hash_is_expanding = 0;
    stats.expired_unfetched = stats.evicted_unfetched = 0;
    stats.slabs_moved = 0;
    stats.accepting_conns = true; /* assuming we start in this state. */
    stats.slab_reassign_running = false;

    /* make the time we started always be 2 seconds before we really
     did, so time(0) - time.started is never zero.  if so, things
     like 'settings.oldest_live' which act as booleans as well as
     values are now false in boolean context... */
    process_started = time(0) - 2;
    stats_prefix_init();
}

3 工作线程的初始化

Memcached采用了典型的Master-Worker的线程模式,Master就是由main线程来充当,而Worker线程则是通过Pthread创建的。

//传入线程个数和libevent的main_base实例
thread_init(settings.num_threads, main_base);


//工作线程初始化
void thread_init(int nthreads, struct event_base *main_base) {
    int         i;
    int         power;
    //初始化各种锁和条件变量
    pthread_mutex_init(&cache_lock, NULL);
    pthread_mutex_init(&stats_lock, NULL);

    pthread_mutex_init(&init_lock, NULL);
    pthread_cond_init(&init_cond, NULL);

    pthread_mutex_init(&cqi_freelist_lock, NULL);
    cqi_freelist = NULL;

    //Memcached对hash桶的锁采用分段锁,按线程个数来分段,默认总共是1<<16个hash桶,而锁的数目是1<<power个 
    /* Want a wide lock table, but don't waste memory */
    if (nthreads < 3) {
        power = 10;
    } else if (nthreads < 4) {
        power = 11;
    } else if (nthreads < 5) {
        power = 12;
    } else {
        /* 8192 buckets, and central locks don't scale much past 5 threads */
        power = 13;
    }

    item_lock_count = hashsize(power);
    //申请1<<power个pthread_mutex_t锁,保存在item_locks数组。
    item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
    if (! item_locks) {
        perror("Can't allocate item locks");
        exit(1);
    }

    //对这些锁进行初始化,这部分可参考APUE的线程部分
    for (i = 0; i < item_lock_count; i++) {
        pthread_mutex_init(&item_locks[i], NULL);
    }

    /*创建线程的局部变量,该局部变量的名称为item_lock_type_key,用于保存主hash表所持有的锁的类型
    主hash表在进行扩容时,该锁类型会变为全局的锁,否则(不在扩容过程中),则是局部锁*/
    pthread_key_create(&item_lock_type_key, NULL);
    pthread_mutex_init(&item_global_lock, NULL);

    //申请nthreds个工作线程,LIBEVENT_THREAD是Memcached内部对工作线程的一个封装
    threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
    if (! threads) {
        perror("Can't allocate thread descriptors");
        exit(1);
    }

    /*分发线程的初始化,分发线程的base为main_base
    线程id为main线程的线程id*/
    dispatcher_thread.base = main_base;
    dispatcher_thread.thread_id = pthread_self();
    //工作线程的初始化,工作线程和主线程(main线程)是通过pipe管道进行通信的
    for (i = 0; i < nthreads; i++) {
        int fds[2];
        if (pipe(fds)) {//初始化pipe管道
            perror("Can't create notify pipe");
            exit(1);
        }

        threads[i].notify_receive_fd = fds[0];//读管道绑定到工作线程的接收消息的描述符
        threads[i].notify_send_fd = fds[1];//写管道绑定到工作线程的发送消息的描述符

        setup_thread(&threads[i]);//添加工作线程到libevent中
        /* Reserve three fds for the libevent base, and two for the pipe */
        stats.reserved_fds += 5;//统计信息更新
    }

    //创建工作线程
    for (i = 0; i < nthreads; i++) {
        create_worker(worker_libevent, &threads[i]);
    }

    //等待所有工作线程创建完毕
    pthread_mutex_lock(&init_lock);
    wait_for_thread_registration(nthreads);
    pthread_mutex_unlock(&init_lock);
}

//Memcached内部工作线程的封装
typedef struct {
    pthread_t thread_id;       //线程ID
    struct event_base *base;   //libevent的不是线程安全的,每个工作线程持有一个libevent实例,用于pipe管道通信和socket通信
    struct event notify_event; //用于监听pipe管道的libevent事件
    int notify_receive_fd;      //接收pipe管道消息描述符
    int notify_send_fd;         //发送pipe管道消息描述符
    struct thread_stats stats;  //每个线程对应的统计信息
    struct conn_queue *new_conn_queue; //每个线程都有一个工作队列,主线程接受的连接,挂载到该消息队列中
    cache_t *suffix_cache;      //后缀cache
    uint8_t item_lock_type;     //线程操作hash表持有的锁类型,有局部锁和全局锁
} LIBEVENT_THREAD;

//分发线程的封装
typedef struct {
    pthread_t thread_id;        //线程id
    struct event_base *base;    //libevent实例
} LIBEVENT_DISPATCHER_THREAD;

//工作线程绑定到libevent实例
static void setup_thread(LIBEVENT_THREAD *me) {
    me->base = event_init();//创建libevent实例
    if (! me->base) {
        fprintf(stderr, "Can't allocate event base\n");
        exit(1);
    }

    //创建管道读的libevent事件,事件的回调函数处理具体的业务信息,关于回调函数的处理,后续分析
    event_set(&me->notify_event, me->notify_receive_fd,
              EV_READ | EV_PERSIST, thread_libevent_process, me);
    event_base_set(me->base, &me->notify_event);//设置libevent实例

    //添加事件到libevent中
    if (event_add(&me->notify_event, 0) == -1) {
        fprintf(stderr, "Can't monitor libevent notify pipe\n");
        exit(1);
    }

    //创建消息队列,用于接受主线程连接
    me->new_conn_queue = malloc(sizeof(struct conn_queue));
    if (me->new_conn_queue == NULL) {
        perror("Failed to allocate memory for connection queue");
        exit(EXIT_FAILURE);
    }
    cq_init(me->new_conn_queue);//消息队列初始化

    if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) {
        perror("Failed to initialize mutex");
        exit(EXIT_FAILURE);
    }

    //创建线程的后缀cache,没搞懂这个cache有什么作用。
    me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),
                                    NULL, NULL);
    if (me->suffix_cache == NULL) {
        fprintf(stderr, "Failed to create suffix cache\n");
        exit(EXIT_FAILURE);
    }
} 

//创建工作线程
static void create_worker(void *(*func)(void *), void *arg) {
    pthread_t       thread;
    pthread_attr_t  attr;
    int             ret;

    pthread_attr_init(&attr);//Posix线程部分,线程属性初始化
    //通过pthread_create创建线程,线程处理函数是通过外部传入的处理函数为worker_libevent
    if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) {
        fprintf(stderr, "Can't create thread: %s\n",
                strerror(ret));
        exit(1);
    }
}

//线程处理函数
static void *worker_libevent(void *arg) {
    LIBEVENT_THREAD *me = arg;
    //默认的hash表的锁为局部锁
    me->item_lock_type = ITEM_LOCK_GRANULAR;
    pthread_setspecific(item_lock_type_key, &me->item_lock_type);//设定线程的属性
    //用于控制工作线程初始化,通过条件变量来控制
    register_thread_initialized();
    //工作线程的libevent实例启动
    event_base_loop(me->base, 0);
    return NULL;
}

//阻塞工作线程
static void wait_for_thread_registration(int nthreads) {
    while (init_count < nthreads) {
        pthread_cond_wait(&init_cond, &init_lock);//在条件变量init_cond上面阻塞,阻塞个数为nthreads-init_count
    }
}

//唤醒工作线程
static void register_thread_initialized(void) {
    pthread_mutex_lock(&init_lock);
    init_count++;
    pthread_cond_signal(&init_cond);
    pthread_mutex_unlock(&init_lock);
}

//每个线程持有的统计信息
struct thread_stats {
    pthread_mutex_t   mutex;
    uint64_t          get_cmds;
    uint64_t          get_misses;
    uint64_t          touch_cmds;
    uint64_t          touch_misses;
    uint64_t          delete_misses;
    uint64_t          incr_misses;
    uint64_t          decr_misses;
    uint64_t          cas_misses;
    uint64_t          bytes_read;
    uint64_t          bytes_written;
    uint64_t          flush_cmds;
    uint64_t          conn_yields; /* # of yields for connections (-R option)*/
    uint64_t          auth_cmds;
    uint64_t          auth_errors;
    struct slab_stats slab_stats[MAX_NUMBER_OF_SLAB_CLASSES];
}; 

//每个slab的统计信息
struct slab_stats {
    uint64_t  set_cmds;
    uint64_t  get_hits;
    uint64_t  touch_hits;
    uint64_t  delete_hits;
    uint64_t  cas_hits;
    uint64_t  cas_badval;
    uint64_t  incr_hits;
    uint64_t  decr_hits;
};

4 连接的初始化

static conn **freeconns;//空闲连接列表
//连接初始化
static void conn_init(void)
{
    freetotal = 200;//空闲连接总数
    freecurr = 0;//当前空闲的索引
        //申请200个空间
        if ((freeconns = calloc(freetotal, sizeof(conn *))) == NULL)
    {
        fprintf(stderr, "Failed to allocate connection structures\n");
    }
    return;
}